
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 200
Volume 1, Issue 4, December 2010

Performance Comparison of Electronic Printwheel

System by PI and PID Controller Using Genetic

Algorithms

*Sobuj Kumar Rayl ,Diponkar Paul2

1International University of Business Agriculture and Technology
2 World University of Bangladesh

Corresponding Addresses

Sobuj_kumar_ray@yahoo.com, dipo0001@ntu.edu.sg

Abstract - PID controller is employed in every aspect of industrial

automation. The application of PID controller extends from small

industry to high technology industry. For those who are in heavy

industries such as refineries and ship-buildings, working with PID

controller is like a routine work. We would optimize the PID

controller. The PID controller was tuned by using the classical

technique that has been taught to us like Ziegler-Nichols method.

We make use of the power of computing world by tuning the PID in

a stochastic manner. In this work it is proposed that the controller

be tuned using the Genetic Algorithm technique. Genetic

Algorithms (GAs) are a stochastic global search method that

emulates the process of natural evolution. Genetic Algorithms have

been shown to be capable of locating high performance areas in

complex domains without experiencing the difficulties associated

with high dimensionality or false optima as may occur with gradient

decent techniques. Using genetic algorithms to perform the tuning

of the controller will result in the optimum controller being

evaluated for the system every time. For this study, the model

selected is an Electronic Printwheel control system. The PI and PID

controller have been initially tuned for printwheel system by using a

classical technique Ziegler Nichols (Z-N). The same model

optimizes using the GA method. The results of both designs will be

compared, analyzed and conclusion will be drawn out of the

simulation made.

1. Introduction

A control system for operating a single high-speed print

wheel is disclosed. The control system includes a print wheel

derive motor having a coded disc with transparent portion

forming a four-level Gray code for indicating the position of

the print wheel. An optical electronic system is used for

positioning the print wheel and also for the purpose of

providing an electronic defend which uses the motive power

of the print wheel drive for holding the print wheel in

selected printing position. A similar optical and electronic

system is used for controlling a paper advance mechanism.

The disclosed system also includes a print hummer with

voice clock coil type drive to permit positive, bidirectional

hammer control. A recent development in typewriters and

word processors is the print wheel printer, a machine that has

become a significant factor in current office machine

production. With this unit typefaces are mounted on spokes

projecting from a central wheel. These machines produce

high quality work with limited individuality. The mode of

identification is significantly different from the work of a

type ball machine and in some respects from the earlier type

bar typewriters. Thus it is important to distinguish between

the work of print wheel machines and other classes of

typewriters. Consideration is given to individual identifying

characteristics; the effects of the machine‟s ability to produce

justified or flush right margins; and the general limitations

on their identification. The aim of this project is to create a

PID and PI controller for the Electronic Printwheel systems

that is tuned using genetic algorithms. Most system is

notoriously difficult to control optimally using a PID and PI

controller because the system parameters are constantly

changing. It is for this reason that genetic algorithms tuning

strategy was applied. Genetic Algorithms are effective at

finding high performance areas in large domains and are the

ideal choice to tune the PID and PI controller. Genetic

Algorithms were examined in detail, it was decided to create

an objective function that evaluated the optimum PID and PI

gains based on the controlled systems overall error. GA‟s

outperformed standard tuning practices, e.g. Ziegler Nichols,

at designing PID and PI controllers, in the tests carried out.

According to a survey for process control systems conducted

in 1989, more than 90 of the control loops were of the PID

type. PID control has been an active research topic for many

years. Since many process plants controlled by PID

controllers have similar dynamics it has been found possible

to set satisfactory controller parameters from less plant

information than a complete mathematical model. These

techniques came about because of the desire to adjust

controller parameters in situ with a minimum of effort, and

also because of the possible difficulty and poor cost bent of

obtaining mathematical models. The two most popular PID

techniques were the step reaction curve experiment, and a

closed-loop “cycling” experiment under proportional control

around the nominal operating point. It has been pointed out

that PID controllers can be used only for plants with

relatively small time delay. When the delay constant

increases; the PID controller cannot guarantee good

responses. In fact, apart from the traditional PID control

structure, other control strategies may also be used to deal

with such case. PID control consists of three types of control,

Proportional, Integral and Derivative control [1].

Figure 1. Schematic of PID Controller

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 201
Volume 1, Issue 4, December 2010

The proportional controller output uses a „proportion‟ of the

system error to control the system. However, this introduces

an offset error into the system.

ErrorKP pterm (1)

The integral controller output is proportional to the amount

of time there is an error present in the system. The integral

action removes the offset introduced by the proportional

control but introduces a phase lag into the system.

 dtErrorKI Iterm (2)

The derivative controller output is proportional to the rate of

change of the error. Derivative control is used to

reduce/eliminate overshoot and introduces a phase lead

action that removes the phase lag introduced by the integral

action.

dt

Errord
Kd Dterm

)(
 (3)

The three types of control are combined together to form a

PID controller with the transfer function:

s

KsKsK
sC IPD

PID

2

)((4)

The PID controller is a “three mode” controller. That is, its

activity and performance is based on the values chosen for

three tuning parameters, one each nominally associated with

the proportional, integral and derivative terms.

The block diagram of a closed–loop system with a PID

controller in direct path [2] as shown in figure 2

Figure 2. Block diagram of PID controller.

As the name suggests, the PI algorithm consists of two basic

modes, the Proportional mode, and the Integral mode .When

utilizing this algorithm it is necessary to decide which modes

are to be used (Por I) and then specify the parameters (or

settings) for each mode used. Generally, two basic

algorithms are used P or PI.

Figure 3. Schematic of PI Controller

The mathematical representation is,

cK
se

smv

)(

)(
 (5)

(Laplace domain) or)()(tKmvtmv css (time domain)

the proportional mode adjusts the output signal in direct

proportion to the controller input (which is the error signal,

e). The adjustable parameter to be specified is the controller

gain, ck .This is not be confused with the process gain, pK .

The larger ck the more the controller output will change for a

given error. For instance, with a gain of 1 an error of 10% of

scale will change the controller output by 10% of scale.

Many instrument manufacturers use Proportional Band (PB)

instead of ck the time domain expression also indicates that

the controller requires calibration around the steady-state

operating point. This is indicated by the constant term ssmv .

This represents the 'steady-state' signals for the mv and is

used to ensure that at zero error the cv is at set point. In the

Laplace domain this term disappears, because of the

„deviation variable‟ representation. A proportional controller

reduces error but does not eliminate it (unless the process has

naturally integrating properties), i.e. an offset between the

actual and desired value will normally exist

The mathematical representation is,

]
1

1[
)(

)(

sT
K

tmv

smv

I

C (6)

])()([)(1

 dtteteKmvtmv
sTCss I

(7)

The additional integral mode (often referred to as reset)

corrects for any offset (error) that may occur between the

desired value (set point) and the process output automatically

over time. The adjustable parameter to be specified is the

integral time (Ti) of the controller.

• Drive a certain distance in a straight line using encoders.

• Maintain position by maintaining a certain encoder tick

count, this causes the motors to fight back against being

pushed with the precise power output required.

• Driving tracking/shooting gimbals using the camera in the

2006 game.

• Maintain rotational velocity of impeller or collector wheels

for balls by adjusting speed based on a target number of

encoder ticks over time.

• Precision position of manipulators using encoders or

potentiometers.

A method and apparatus for providing variable print hammer

energy information and variable character spacing

information for every character of every font in an electronic

typing system having interchangeable print wheels, wherein

the individual print wheels carry self-descriptive information

in coded form on a read-only memory. The descriptive

information is encoded on a portion of the print wheel and

contains, in high density, machine readable, permanent form,

and sufficient coded data to instruct the electronic typing

system as to the optimal use of the particular font of

characters contained on the type wheel. In a preferred

embodiment, a single initializing revolution of the print

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 202
Volume 1, Issue 4, December 2010

wheel upon each insertion or machine start-up cycle serves

to load the encoded data into a read/write memory for

subsequent call-up and use by the electronic typing system

during the print-out of each character. (Dingyu

Xue,YangQuan Chem,and Derek P.Athenton, 2007) The data

is serially encoded on the print wheel for reading by single

track optional sensing apparatus. Alternate embodiments

using parallel data tracks and magnetic sensing apparatus are

discussed.

In control system position-control is quite common, that has

variable load inertia. For example, the load inertia seen by

the motor in an electronic printer wheel change when

different printwheels are used. To illustrate the design of a

robust system that is insensitive to the variation of the load

inertia, consider that the forward path transfer function of a

unity feedback control system [2]

 bi

bi
P

KKBLsBJss

KK
sG

)((8)

The system parameters are

 iK = motor torque constant =1N-m/A

 bK = motor back emf constant =1v/rad/sec

 R= motor resistant =1 Ω

 L=motor inductance =0.01H

 B= motor and load viscous-friction coefficient =0

 J =motor and load inertia, varies between 0.02 and 0.02

N-m/rad/ sec
2

 K =amplifier gain

Substituting these parameters into (8) we get

For 01.0J

 10000100

10000
)(

2

sss

K
sGp (9)

For ;02.0J

 5000100

5000
)(

2

sss

K
sGp (10)

2. Method

Genetic Algorithms (GA‟s) are a stochastic global search

method that mimics the process of natural evolution. The

genetic algorithm starts with no knowledge of the correct

solution and depends entirely on responses from its

environment and Evolution operators (i.e. reproduction,

crossover and mutation) to arrive at the best solution. By

starting at several independent points and searching in

parallel, the algorithm avoids local minima and converging

to sub optimal solutions. In this way, GAs have been shown

to be capable of locating high performance areas in complex

domains without experiencing the difficulties associated with

high dimensionality, as may occur with gradient decent

techniques or methods that rely on derivative information

[5]. A genetic algorithm is typically initialized with a

random population consisting of between 20-100 individuals.

This population (mating pool) is usually represented by a

real-valued number or a binary string called a chromosome.

For illustrative purposes, the rest of this section represents

each chromosome as a binary string. How well an individual

performs a task is measured is assessed by the objective

function (D. E. Goldberg, 1989). The objective function

assigns each individual a corresponding number called its

fitness. The fitness of each chromosome is assessed and a

survival of the fittest strategy is applied. In this project, the

magnitude of the error will be used to assess the fitness of

each chromosome. There are three main stages of a genetic

algorithm; these are known as reproduction, crossover and

mutation. Genetic Algorithms provides an adaptive searching

mechanism inspired on Darwin‟s principle of the fittest. It is

invented by John Holland of the university of Michigan,

after David Goldberg gave a basic idea of GA in his book „‟

Genetic Algorithm Search, Optimization and Matching

Learning‟‟ .GA is a search and optimization techniques

inspired by biological process namely. „natural‟ selection‟

and natural genetics‟. GA starts with no knowledge of

correct solution and depends on responses from its

environment. GA manipulates not just one potential

solution to a problem, but a collection of potential solution,

called a population. The potential solution in population is

called „individuals‟ or „chromosomes‟, each of them is

associated to a fitness value. The chromosomes are subjected

to an evolutionary process which takes several cycles. Basic

operations are selection, reproduction, crossover, and

mutation. During crossover some reproduced individuals

cross and exchange their genetic characteristics and such

crossover create new chromosomes from the existing one s

in the population. The selection mechanism for parent

chromosomes takes the fitness of parent into account,

ensuring that the better solution have a higher chance to

procreate and donate their beneficial characteristics to their

offspring. Newly generated individuals in time replace the

existing ones. Through this process after a while the

population will converge to a „best‟ solution.

Figure 4. Graphical Illustration the Genetic Algorithm

Outline

Whom it points is selected. This continues until the selection

criterion has been met. The probability of an individual being

selected is thus related to its fitness, ensuring that fitter

individuals are more likely to leave offspring. Multiple

copies of the same string may be selected for reproduction

and the fitter strings should begin

More complex crossover techniques exist in the form of

Multi-point and Uniform Crossover Algorithms. Multi-point

crossover is an extension of the single point crossover

algorithm and operates on the principle that the parts of a

chromosome that contribute most to its fitness might not be

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 203
Volume 1, Issue 4, December 2010

adjacent. There are three main stages involved in a Multi-

point crossover.

1. Members of the newly reproduced strings in the mating

pool are „mated‟ (paired) at random.

 2. Multiple positions are selected randomly with no

duplicates and sorted into ascending order.

3. The bits between successive crossover points are

exchanged to produce new offspring.

Example: If the string 11111 and 00000 were selected for

crossover and the multipoint crossover positions were

selected to be 2 and 4 then the newly created strings will be

11001 and 00110 as shown in Figure 5.

Figure 5. Illustration of a Multi-Point Crossover

 In uniform crossover, a random mask of ones and zeros of

the same length as the parent strings is used in a procedure as

follows.

1. Members of the newly reproduced strings in the mating

pool are „mated‟ (Paired) at random.

2. A mask is placed over each string. If the mask bit is a one,

the underlying bit is kept. If the mask bit is a zero then the

corresponding bit from the other string is placed in this

position.

 Example: If the string 10101 and 01010 were selected for

crossover with the mask

10101 then newly created strings would be 11111 and 00000

as shown in Fig. 6.

Figure 6. Illustration of a Uniform Crossover

Uniform crossover is the most disruptive of the crossover

algorithms [4] and has the capability to completely dismantle

a fit string, rendering it useless in the next generation.

Because of this Uniform Crossover will not be used in this

project.

The following schematic diagram illustrates the three types

of children.

2.1 Mutation

Using selection and crossover on their own will generate a

large amount of different strings however there are two main

problems with this:

1) Depending on the initial population chosen, there

may not be enough diversity in the initial string to

ensure the GA searches the entire problem space.

2) The GA may converge on sub-optimum string due

to a bad choice of initial population.

Figure 7: Schematic diagram illustrates the three types of

children

This problem may be overcome by the introduction of a

mutation operator into the GA. Mutation is the occasional

alteration of a value of a string position. It is considered a

back ground operator in the genetic algorithm.

The probability of mutation is normally low because a high

mutation rate would destroy fit of

Mutation and degenerate the genetic algorithm into a random

search. Mutation probability values of around 0.1% to 0.01%

are common, these values represent the probability that a

certain string will be selected for mutation, that is for a

probability of 0.1%: one string in one thousand will be

selected for mutation (C. R. Houck, J. Joines. and

M.Kay., 1996). Once a string is selected for mutation, a

randomly chosen element of the string is changed or

„mutated‟.

For example, if the GA chooses bit position 4 for mutation in

the binary string 10000, the resulting string is 10010 as the

fourth bit in the string is flipped as shown in Figure 8

Figure 8. Illustration of Mutation Operation

2.2 Elitism

With crossover and mutation taking place, there is a high risk

that the optimum solution could be lost as there is no

guarantee that these operators will preserve the fittest string.

To counteract this, elitist models are often used. In an elitist

model, the best individual from a population is saved before

any of these operations take place. After the new population

is formed and evaluated, it is examined to see if this best

structure has been preserved. If not, the saved copy is

reinserted back into the population. The GA then continues

on as normal [6] Fig 9 Initializing the Population of the

Genetic Algorithm

The following code is based on the Genetic Algorithm

Optimization Toolbox

(GAOT) [3].

· PopulationSize - The first stage of writing a Genetic

Algorithm is to create a population. This command

defines the population size.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 204
Volume 1, Issue 4, December 2010

Figure 9. Codes Initializing the Population of a Genetic

Algorithm

· VariableBounds - Since this project is using genetic

algorithms to optimize the gains of a PID controller

there are going to be three strings assigned to each

member of the population, these members will be

comprised of a P, I and a D string that will be evaluated

throughout the course of the GA. The three terms are

entered into the genetic algorithm via the declaration of

a three-row variablebounds matrix. The number of rows

in the variablebounds matrix represents the number of

terms in each member of the population. Figure 9

illustrates a population of eighty members being

initialized with values randomly selected between -100

and 100.

· EvalFN - The evaluation function is the declaration of the

file name containing the objective function.

· Options - Although the previous examples in this section

were all binary encoded,

this was just for illustrative purposes. Binary strings have

two main drawbacks:

1. They take longer to evaluate due to the fact they have to

be converted to/from binary.

2. Binary strings lose precision during conversion.

As a result of this and the fact that they use less memory, real

(floating point) numbers will be used to encode the

population. This is signified in the options command in

Figure 9, where the „1e-6‟ term is the floating point precision

and the „1‟ term indicates that real numbers are being used (0

indicates binary encoding is being used).

· Initialisega - This command combines all the previously

described terms and creates an initial population of 80 real

valued members between –100 and 100 with 6 decimal place

precision.

2.3 Initializing the Population Genetic Algorithm

A genetic algorithm is initialized as shown in Figure 10.

Figure 10. Initializing the Genetic Algorithm

Bounds - The bounds for the genetic algorithm to search

within are set using this command. These bounds may be

different from the ones used to initials the population and

they define the entire search space for the genet algorithm.

startPop - The starting population of the GA, „startPop‟, is

defined as the population described in the previous section,

i.e. „initPop‟, see Figure 4.12.opts - The options for the

Genetic Algorithm consist of the precision of the string

values i.e. 1e-6, the declaration of real coded values, 1, and a

request for the progress of the GA to be displayed, 1, or

suppressed, 0.· TermFN - This is the declaration of the

termination function for the genetic algorithm. This is used

to terminate the genetic algorithm once certain criterion has

been met. In this project, every GA will be terminated when

it reaches a certain number of generations using the

„maxGenTerm‟ function. This termination method allows for

more control over the compile time (i.e. the amount of time it

takes for the genetic algorithm to reach its termination

criterion) of the genetic algorithm when compared with other

termination criteria e.g. convergence termination criterion. ·

TermOps - This command defines the options, if any, for

the termination function. In this example the termination

options are set to 100, which mean that the GA will

reproduce one hundred generations before terminating. This

number may be altered to best suit the convergence criteria

of the genetic algorithm i.e. if the GA converges quickly then

the termination options should be reduced. · SelectFN -

Normalized geometric selection („normGeomSelect‟) is the

primary selection process to be used in this project. The

GAOT toolbox provides two other selection functions,

Tournament selection and Roulette wheel selection.

Tournament selection has a longer compilation time than the

rest and as the overall run time of the genetic algorithm is an

issue, tournament selection will not be used. The roulette

wheel option is inappropriate due to the reasons mentioned

in section. · SelectOps - When using the „normGeomSelect‟

option, the only parameter that has to be declared is the

probability of selecting the fittest chromosome of each

generation, in this example this probability is set to 0.08. ·

XOverFN - Arithmetic crossover was chosen as the

crossover procedure. Single point crossover is too simplistic

to work effectively on a chromosome with three alleles, a

more uniform crossover procedure throughout the

chromosome is required. Heuristic crossover was discarded

because it performs the crossover procedure a number of

times and then picks the best one. This increases the

compilation time of the program and is undesirable. The

Arithmetic crossover procedure is specifically used for

floating point numbers and is the ideal crossover option for

use in this project. · XOverOptions -This is where the

number of crossover points is specified. In the example

shown in Figure 5.8, the number of crossovers points is set to

four.. The „multiNonUnifMutation‟, or multi non-uniformly

distributed mutation operator, was chosen as the mutation

operator as it is considered to function well with multiple

variables.. The mutation operator takes in three options when

using the„multiNonUnifMutation‟ function. The first is the

total number of mutations, normally set with a probability of

around 0.1%. The second parameter is the maximum number

of generations and the third parameter is the shape of the

distribution. This last parameter is set to a value of two, three

or four where the number reflects the variance of the

distribution.5.9 performing the Genetic Algorithm The

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 205
Volume 1, Issue 4, December 2010

genetic algorithm is compiled using the command shown in

Figure 4.13. Once this command is entered, the genetic

algorithm will iterate until it fulfills the criteria described by

its termination function. Writing an objective function is the

most difficult part of creating a genetic Algorithm. An

objective function could be created to find a PID controller

that gives the smallest overshoot, fastest rise time or quickest

settling time but in order to combine all of these objectives it

was decided to design an objective function that will

minimize the error of the controlled system. Each

chromosome in the population is passed into the objective

function one at a time. The chromosome is then evaluated

and assigned a number to represent its fitness, the bigger its

number the better its fitness. The genetic algorithm uses the

chromosome‟s fitness value to create a new population

consisting of the fittest members.

3. Simulation Result

Print wheel control system for resetting and setting a

plurality of print wheels, said control system having means

for generating timing pulses in accordance with the rotation

of the print wheels, a pulse signal distributor for generating

control signals associated with successive characters on each

of the print wheels, and a selector network and controls

responsive to the control signals for arresting the movement

of each of the print wheels, depending upon the character of

each of the print wheels to be selected.

3.1 Development Electronic Print Wheel System

To aid with the development of this project a system was

chosen at random and a PID and PI controller was designed

for it using conventional methods. A genetic algorithm was

then created to evaluate the PID and PI coefficients of the

same system and the results of the two techniques were

compared. The system was selected as position control

(Electronic print wheel system) [2] system is of order three.

The system chosen was:

sss
sG

5000100

5000
)(

23
 (11)

3.2 Ziegler-Nichols Designed PID and PI Controller

The Ziegler-Nichols tuning method using root-locus was the

„conventional‟ method used to evaluate the PID and PI gains

for the system. Using the „rlocus‟ command in Matlab,The

crossover point and gain of the system were found to be

j71.1 and 101 respectively, as shown in Figure 11

Figure 11. Plot of root locus for)(sG

With a frequency (c) of 1rad/s the period cT is calculated

as,

c
cT

2
 Sec (12)

Table 1. Ziegler-Nichols PID and PI Tuning Parameters

Gives

Controller
PK IT DT

PID
cK6.0

2

cT

8

cT

PI
cK45.0

2.1

cT

Table 2. Ziegler-Nichols PID Tuning Values

Controller
PK IT DT

PID 60.60 0.044 0.011

PI 31.99 0.073

Using the relationship
I

p
I

T

K
K and DPD TKK , the PID

and PI gain can be evaluated.

Table 3. Ziegler-Nichols PID and PI Gain values

 Controller
PK IK DK

 PID 60.60 1377.27 0.66

 PI 31.99 434.39

Table 3 shows the PID and PI gain values for the system

G(s). A genetic algorithm, Initial PID GA. Initial PI GA. was

created to evaluate the optimum PID and PI gain values for

the system G(s). A number of objective functions were

created in order to evaluate the PID and PI values chosen by

the Genetic Algorithm.

Comparisons of Steady Step Response of Integral of Time

Multiplied by Absolute Error (ITAE)

Figure 12. Step Response of Integral of Time Multiplied by

Absolute Error (ITAE)

Comparisons of Steady Step Response Integral of Absolute

Magnitude of the Error (IAE)

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 206
Volume 1, Issue 4, December 2010

Figure 13. Step Response Integral of Absolute Magnitude of

the Error (IAE)

Comparisons of Steady Step Response Integral of the Square

of the Error (ISE)

Figure 14. Step Response Integral of the Square of the Error

(ISE)

Comparisons of Steady Step Response Mean of the Square

of the Error (MSE)

Figure15. Step Response Mean of the Square of the Error

(MSE)

4. Discussion

Figure 12 to 15 shows Ziegler-Nichols designed PID and PI

controller Vs GA designed PID and PI Controller using

ITAE, IAE, ISE and MSE as performance Criterion. Under

the conditions of this experiment, it can be seen that the IAE

Objective functions performs having a smaller rise time,

smaller Overshoot and smaller settling time than the other

PI controllers (Ms Jennifer Bruton, 2003). Again the ITAE

Objective functions performs having a smaller rise time,

smaller Overshoot and smaller settling time than other PID

controllers. Each of the genetic algorithm-tuned PID and PI

controllers outperforms the Ziegler-Nichols tuned controller

in terms of rise time, overshoot and settling time. Each of the

PID controller performance is more than PI in terms of rise

time, overshoot and settling time. The ITAE objective

function was chosen as the primary performance criterion for

the remainder of this project due to its smaller settling time

and smaller overshoot than any other method in conjunction

with a slightly faster compile time due to there being just one

multiplication to be carried after the error has been

calculated. This is coupled with the fact that ITAE has been a

proven measure.

5. Conclusion and discussion

It was established that the steady state characteristics of

GA‟s outperformed standard tuning practices when

designing a PID and PI controller. It was determined that the

Steady Step Response of Integral of Absolute Magnitude of

the Error (IAE) performance criterion based objective

function produced the most effective PI controllers when

compared with other performance criterion i.e. MSE, ITAE

and ISE. Again Integral of Time Multiplied by Absolute

Error (ITAE) performance criterion based objective function

produced the most effective PID controllers when compared

with other performance criterion i.e. IAE, MSE, and ISE. It

was proved by comparison of their steady state

characteristics that PID outperformed standard tuning

practices than PI controller. When testing the genetic

algorithm component, it was discovered to frequently

produce controllers that made the overall controlled system

unstable. The exact cause for this could not be determined.

To rectify this problem, the genetic algorithm was modified

so it would analyze the controller it evaluates. If the

controller produces an unstable system, it is replaced with

the last stable controller evaluated by the genetic algorithm.

The genetic algorithm online tuned PID controller proved to

be a capable controller. Adequate testing of the controller

could not be performed due to the simulation difficulties

mentioned previously. It is illustrative of the fact that we

have worked on a transfer function which is fixed for

printwheel system parameter. But in real life its parameter is

not constant. Again we have used only step response but

ramp response, impulse etc could be used as the remarkable

scope for the future work on it. This process can be applied

to many other control systems such as ball and hoop control

system, sun seeker system etc.

References

[1] Ms Jennifer Bruton , Ian Griffin” On-line PID Controller

Tuning using Genetic

Algorithms” 2003.

[2] Linear Feedback Control by Dingyu Xue,YangQuan

Chem,and Derek P.Athenton

Chapter 6,Copyright @ 2007

[3] U.S Patent March 14,1978 Sheet 7 of 7 4,078,485

Print wheel control John Gilkeson Guthrie

http://patents?id=hjIrAAAAEBAJ&printsec=abstract&zoom

=4&source=gbs_overview_r&cad=0#v=onepage&q=&f=fals

e

[4] Automatic Control systems, 7th

Ed.

By Benjamin C.Kuo

[5] O‟ Mahony, T., Downing,C.J. and Klaudiuz, F.,

„Genetic Algorithms for PID

Parameter Optimisation: Minimising Error Criteria‟,

[online], URL:

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 207
Volume 1, Issue 4, December 2010

http://www.pwr.wroc.pl/~i-8zas/kf_glas00.pdf

[6] D. E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine

Learning, Addison-Wesley Publishing Co., Inc., 1989

[7] C. R. Houck, J. Joines. and M.Kay. A genetic

algotithm for function optimisation: A Matlab

implementation. ACM Transactions on Mathematical

Software, 1996, [Online], URL:

http://www.eos.ncsu.edu/eos/service/ie/research/kay_res/GA

ToolBox/gaot

First Author’s Biography

Mr. Sobuj Kumar Ray was born in Bogra, Bangladesh in

1987. Mr. Ray received his Bachelor degree in Electrical and

Electronic Engineering from the Rajshahi University of

Engineering and Technology (RUET), Rajshahi, Bangladesh

in April 2010. Now he is a faculty in the department of

Electrical and Electronic Engineering, Internal University of

Business Agriculture and Technology (IUBAT),

Uttara,Dhaka, Bangladesh(www.iubat.edu). The major fields

of study of Mr. Ray comprise control system and power

system.

Second author’s Biography

Mr. Diponkar Paul is currently working as Assistant

Professor in the department of Electrical and Electronic

engineering at Stamford University Bangladesh. After

passing his master degree from March 2008 he was serving

as Assistant Professor, EEE at Bangladesh University upto

July 2010. He is having qualifications: B.Sc. Engg., DISM

(software engineering), M.Sc. Engg. His research interests

are in the area of energy conversions, power system

modeling and advanced control theories covering the

application of IT. From 0ct 2004 to July 2006, he was

working as Lecturer in department of computer science and

engineering at Pundra University of science & technology,

Bogra. In Singapore during his master degree at Nanyang

technological university, he was involved in financial service

operation integrated to IT system administration jobs from

Dec 2006 to February 2008.

http://www.pwr.wroc.pl/~i-8zas/kf_glas00.pdf
http://www.eos.ncsu.edu/eos/service/ie/research/kay_res/GAToolBox/gaot
http://www.eos.ncsu.edu/eos/service/ie/research/kay_res/GAToolBox/gaot
http://www.iubat.edu/

